Residual intersections and modules with Cohen-Macaulay Rees algebra
نویسندگان
چکیده
In this paper, we consider a finite, torsion-free module E over Gorenstein local ring. We provide sufficient conditions for to be of linear type and the Rees algebra R ( ) Cohen-Macaulay. Our results are obtained by constructing generic Bourbaki ideal I exploiting properties residual intersections .
منابع مشابه
Cohen-macaulay Residual Intersections and Their Castelnuovo-mumford Regularity
In this article we study the structure of residual intersections via constructing a finite complex which is acyclic under some sliding depth conditions on the cycles of the Koszul complex. This complex provides information on an ideal which coincides with the residual intersection in the case of geometric residual intersection; and is closely related to it in general. A new success obtained thr...
متن کاملCohen-Macaulay Rees Algebras and Their Specialization
an isomorphism? These questions have interest partly because if S and .S’(J, S) are Cohen-Macaulay, then so is gr, S := S/J@ J/J’... [ 16 1 and under these hypotheses if N is perfect and R @ .S(J, S) = .$(I, R), then R and .7(1. R) are Cohen-Macaulay too. Thus, gr,R is Cohen-Macaulay, and its torsion freeness and normality, for exmple, can be characterized in terms of analytic spreads, as in [ ...
متن کاملLiaison with Cohen–Macaulay modules
We describe some recent work concerning Gorenstein liaison of codimension two subschemes of a projective variety. Applications make use of the algebraic theory of maximal Cohen–Macaulay modules, which we review in an Appendix.
متن کاملRESULTS ON ALMOST COHEN-MACAULAY MODULES
Let $(R,underline{m})$ be a commutative Noetherian local ring and $M$ be a non-zero finitely generated $R$-module. We show that if $R$ is almost Cohen-Macaulay and $M$ is perfect with finite projective dimension, then $M$ is an almost Cohen-Macaulay module. Also, we give some necessary and sufficient condition on $M$ to be an almost Cohen-Macaulay module, by using $Ext$ functors.
متن کاملIndecomposable Cohen-macaulay Modules and Their Multiplicities
The main aim of this paper is to find a large class of rings for which there are indecomposable maximal Cohen-Macaulay modules of arbitrary high multiplicity (or rank in the case of domains).
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 2021
ISSN: ['1090-266X', '0021-8693']
DOI: https://doi.org/10.1016/j.jalgebra.2021.07.022